Beberapa waktu yang lalu kalian telah mempelajari materi tentang hubungan antara titik dengan bidang, yaitu titik terletak pada bidang atau titik di luar bidang.
Untuk kedudukan titik yang terletak di luar bidang tentunya dia mempunyai jarak. Dalam topik ini kalian akan mempelajari topik jarak antara titik dan bidang.
Apakah kalian masih ingat cara mencari jarak antara titik dan garis?
1. Proyeksi sebuah titik T pada bidang V dapat diperoleh dengan cara menarik garis tegak lurus dari titik T terhadap bidang V. Selanjutnya, perpotongan garis tegak lurus dari titik T dengan bidang V yaitu titik T' dan disebut proyeksi titik T pada bidang V.
T' adalah proyeksi T pada bidang V
2. Jarak antara titik T dan bidang V adalah panjang ruas garis yang tegak lurus dari titik T ke bidang V atau panjang ruas garis lurus dari titik T ke titik proyeksinya di T' pada bidang V.
d adalah jarak antara titik T dan bidang V
3. Untuk menghitung jarak antara titik T dan bidang V dibuat segitiga yang memuat titik T dan proyeksinya yaitu T' yang terletak di bidang V, kemudian dapat digunakan rumus :
a) teorema Pythagoras, jika segitiga yang terbentuk segitiga sama kaki
b) luas segitiga, jika segitiga yang terbentuk segitiga siku-siku
c) rumus perbandingan (atau dalil titik tengah segitiga / dalil intersep)
Untuk lebih jelasnya, mari kita perhatikan contoh berikut.
Contoh
Diketahui kubus ABCD.EFGH dengan panjang rusuk 12 cm.
Hitung jarak antara :
a) titik A dan bidang DCGH
b) titik B dan bidang ACGE
c) titik E dan bidang AFH
Jawab :
a)
Untuk menghitung jarak titik A ke bidang DCGH, dari titik A ditarik garis tegak lurus ke bidang DCGH yaitu A’ yang terletak di titik D.
Jarak titik A ke bidang DCGH adalah AA’ = AD = 12 cm.
b)
Untuk menghitung jarak titik B ke bidang ACGE, dari titik B ditarik garis tegak lurus ke bidang ACGE yaitu B’ yang terletak pada perpotongan garis diagonal sisi ABCD. Jarak titik B ke bidang ACGE adalah BB’.
Untuk menghitung jarak titik E ke bidang AFH, dari titik E ditarik garis tegak lurus ke bidang AFH yaitu E’ yang terletak pada perpotongan garis diagonal EC dengan garis AK (dimana titik K adalah perpotongan garis diagonal EG dan HF). Jarak titik E ke bidang AFH adalah EE’.
Dalam segiempat ACGE :
Untuk kedudukan titik yang terletak di luar bidang tentunya dia mempunyai jarak. Dalam topik ini kalian akan mempelajari topik jarak antara titik dan bidang.
Apakah kalian masih ingat cara mencari jarak antara titik dan garis?
1. Proyeksi sebuah titik T pada bidang V dapat diperoleh dengan cara menarik garis tegak lurus dari titik T terhadap bidang V. Selanjutnya, perpotongan garis tegak lurus dari titik T dengan bidang V yaitu titik T' dan disebut proyeksi titik T pada bidang V.
2. Jarak antara titik T dan bidang V adalah panjang ruas garis yang tegak lurus dari titik T ke bidang V atau panjang ruas garis lurus dari titik T ke titik proyeksinya di T' pada bidang V.
3. Untuk menghitung jarak antara titik T dan bidang V dibuat segitiga yang memuat titik T dan proyeksinya yaitu T' yang terletak di bidang V, kemudian dapat digunakan rumus :
a) teorema Pythagoras, jika segitiga yang terbentuk segitiga sama kaki
b) luas segitiga, jika segitiga yang terbentuk segitiga siku-siku
c) rumus perbandingan (atau dalil titik tengah segitiga / dalil intersep)
Untuk lebih jelasnya, mari kita perhatikan contoh berikut.
Contoh
Diketahui kubus ABCD.EFGH dengan panjang rusuk 12 cm.
Hitung jarak antara :
a) titik A dan bidang DCGH
b) titik B dan bidang ACGE
c) titik E dan bidang AFH
Jawab :
a)
Jarak titik A ke bidang DCGH adalah AA’ = AD = 12 cm.
b)
Dalam segiempat ACGE :
0 komentar:
Post a Comment